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Abstract

Introduction: Both hypoglycemia (low blood glucose) and hyperglycemia (high blood
eﬁ

are common among individuals with type 1 diabetes and are associated with severﬁ
a

complications, therefore it is essential that health care providers are able to easure
glycemic control. Measures derived from continuous glucose monitori

more accurate measurements of glycemia than the commonly us ood test.

Methods: Data from the Juvenile Diabetes Research Fou

\T‘%J F) clinical trial to assess

the efficacy of continuous glucose monitoring was u% ate the ability of CGM

composite scores to predict time in range, tim 'n@lycemia and time in hypoglycemia.
Spearman partial correlation coeﬁicient#er%ated between composite measures and
Results: HbAlc showed v@tions with time below 54 mg/dL (R = -0.05) and time
below 70 mg/dL (R —SM

however, most derived metrics had stronger correlations. HbAlc was also

thresholds of glycemia.

1c was moderately correlated with time in range (R = -0.62),

moderatel with time above 180 mg/dL (R = 0.68) and time above 250 mg/dL (R =
0.6 r'several CGM derived composite scores including the J-index, GRADE, the Q-

& I, CGP, and PGS all had stronger correlations with time in hyperglycemia (Table 3).

nclusions: HbAlc is a poor predictor of time in hypoglycemia and moderately correlated with
time in hyperglycemia. Several composite metrics had stronger correlations with both hypo and

hyperglycemia than HbAlc and were better predictors of meeting clinical targets.



Introduction and Review of Literature

Type 1 diabetes (T1D) is a chronic disease in which the immune system attacks :

Withou
arca et

cells the body cannot produce insulin, which is needed to convert glucose ing

body’s insulin producing beta cells (Marca, Gianchecchi, & Fierabrachi, 2018).

al., 2018). Therefore, people with T1D must manually administer insuli er an insulin

pump or through daily injections (Danne et al., 2017). If an insuffici tity of insulin is
administered this will result in an excess of glucose in the %( n as hyperglycemia (Beck
et al., 2019). Hyperglycemia is associated with sever M complications including

diabetic retinopathy, nephropathy, autonomic an | neuropathy, and cardiovascular

disease (Beck et al., 2019; Nathan, 2013; Vig&l al., 2018). If excess insulin is
unt of

administered, this results in an insuffiQo
hypoglycemia (American Dia iation [ADA], 2019; Hirsch et al., 2017).
Hypoglycemia is associ several short-term complications such as rapid heart rate,

dizziness, shortnessf breath, seizures, loss of consciousness and in serious cases death (ADA,

glucose in the blood, known as

2019). Admi correct amount of insulin can be a challenge for those with T1D as the

equired changes based on changes in diet and physical activity (ADA, 2019).
“it1s essential for T1D patients to continuously monitor their glucose in order to

ister the appropriate amount of insulin and prevent long- and short-term complications

om hypoglycemia and hyperglycemia, and it is important for providers to assess the glycemic

control of their patients.



Currently the gold standard for measuring glycemic control is hemoglobin Alc (HbAlc)
(Beck, Connor, Mullen, Wesley, & Bergenstal, 2017; Bergenstal et al., 2018; Khonert, 2015).

Overtime, small amounts of glucose will attach to hemoglobin molecules in the red blood cells.

Researchers found that concentrations of glycated hemoglobin are directly proportional to

individual’s mean glucose over a three month period, with a higher HbA 1¢ indicating@hi

mean glucose over time (Beck et al., 2017). The Diabetes Control and Complic Tria

(DCCT), a ten year trial conducted from 1983 — 1993 among individuals nd 2
diabetes, established that HbAlc was a strong predictor of long ter mplications

(Nathan, 2013). However, there are several disadvantages to using, HbAILc as a measure of

glycemic control. \%

One disadvantage is that a single value of &w be associated with a wide range of
mean glucose values. Beck et al. (2017) sho se with an HbA1c of 6% could have a
mean glucose anywhere between 101 - 163 mg/dL, those with an HbAlc of 7% could

have a mean from 128 mg/dL t 1@ , and those with an HbA1c of 8% could have a mean
X

from 155 mg/dL to 218 m fore, it is difficult to identify from the HbAlc alone if a

person’s average gl&?en in a healthy range. HbA1c is only moderately correlated with

the time spent e time spent in hyperglycemia, and weekly correlated with time spent

«Q

in hypogl ck etal., 2017; Beck et al., 2019). Another disadvantage of HbALlc is that
int I variability in red blood cell lifespan can alter Alc levels even when blood
&vels are constant (Cohen et al., 2008). For two people with the same mean glucose

Qr time, the person with a higher red blood cell lifespan will have a higher HbA1c, as their

cells have been exposed to glucose for longer. Abnormally low or high red blood cell lifespans

can be caused by medical conditions such as anemia, high triglyceride levels, pregnancy, and red



blood cell transfusion, however even in the absence of these conditions there is still some inter-

individual variation in life span (Cohen et al., 2008).

Alternative methods of measuring glycemic control that do not have the same

disadvantages as Alc are possible through the use of continuous glucose monitoring (CG
devices. The continuous glucose monitor is a device worn by T1D patients and recor
measurement of glucose every 5 minutes (Danne et al., 2017; Henriques, Mu @ Costa,

& Goldberger, 2014). The device consists of three components; a sensor, nserted under
the skin to measure glucose, the transmitter, which is attached to th? d transmits the
glucose reading to the receiver, and a device which displays &1 al’s glucose levels in
real time (Danne et al., 2017). In addition to helping tho% D better control their glucose,

'&asures of glycemic control such as

a healthy range (70-180 mg/dL), percent

data from CGM devices can be used to calculate

mean glucose, glucose variability, percent ti

time spent in hyperglycemia (>180 m

mg/dL) (Beck et al., 2019; Serv'c@. he indices on which physicians most rely when
AN

evaluating a patient’s gluc are the time spent in thresholds of hypoglycemia,

nd percent time spent in hypoglycemia (<70

hyperglycemia an(& cemic range (Beck et al., 2019; Costa, Enriques, Munshi, Segal,
). Wil

& Goldberger ile these individual indices provide quality information on different

aspects of glycemic control, it is challenging for clinicians to assess a patients overall

co %o many different metrics (Hirsch et al., 2017; Khonert, 2015) and up to date there

&e standard measure for evaluating an individual’s glycemic control using CGM data,
QJgh many metrics have been proposed (Khonert, 2015; Peyser, Balo, Buckingham, Hirsch, &

Garcia, 2018). This also poses a challenge for clinical research as the primary end point in

diabetes clinical trials is usually glucose control, and none of these indices used alone can



appropriately reflect a person’s overall control. Therefore, a measurement that is sensitive to

hyperglycemia risk, hypoglycemia risk, and time spent in a healthy range is needed.

There are many proposed metrics calculated using CGM that are intended to measure a

patient’s overall glucose control. These include the following: Comprehensive glucose p
(Vigersky et al., 2018), Personal Glycemic State (Hirsch et al., 2017), Average Daily e
(ADRR) (Khonert, 2015; Kovatchev, Otto, Cox, Gonder-Fredrick, & Clark, 2 Il etal.,

2009), Glycemic Risk Assessment Diabetes Equation (GRADE) (Hill, 20 rt, 2015), Q-

score (Augustein et al., 2015; Khonert, 2017), J-index (Service, 201 se Management

Indicator (GMI) (Bergenstal et al., 2018), Glycemic Variabili ntage (GVP) (Peyser et al.,

2018), Mean Amplitude of Glycemic Excursions (MAG gs et al., 2011, Service,

2013), Mean of Daily Differences (MODD) (Ra , 2011; Service, 2013), and
Continuous Overall Net Glycemic Action (C awlings et al., 2011; Marics, 2015;
Service, 2013). The purpose of this st il be'to assess the correlation of CGM derived

composite metrics of glucose caon e commonly used CGM indices of time in range,
x

time in hypoglycemia, an i perglycemia.

Hypothesis v

In this study analysis will test how well HbAlc and each of the CGM metrics listed
above d with the following glycemic indices

\%ﬂe in a healthy range (70 mg/dL to 180 mg/dL)
Qo Time in hyperglycemia (>180 mg/dL)

e Time in severe hyperglycemia (>250 mg/dL)

e Time in hypoglycemia (<70 mg/dL)



e Time in severe hypoglycemia (<54 mg/dL)

In 2019 the Advanced Technologies and Treatments for Diabetes (ATTD) congress

established clinical targets for commonly used CGM indices (Battelino et al., 2019). For

e Time in Range (70-180 mg/dL): > 70% Q
Time > 180 mg/dL: <25% &
Time > 250 mg/dL: <10% Q

Time < 70 mg/dL: <4% v

Time < 54 mg/dL: <1% é

As a secondary analysis, ROC curves will be used %\ ability of each of the CGM

individuals with type 1 diabetes the clinical targets are outlined below:

metrics under study to predict whether or not

established by ATTD. e

al is meeting the clinical guidelines



Methods

Data Collection
This analysis used data collected from the Juvenile Diabetes Research FoundaQ

(JDRF) randomized clinical trial to assess the efficacy of real time continuous

monitoring in the management of type 1 diabetes (U.S., National Library icine, 2017,

Tamborlane et al., 2008). This trial enrolled 451 participants and co%
phase lasting six months. In phase 1, participants were randon& treatment group,
which was to wear an unblinded CGM device, or the co , Which consisted of wearing a

blinded CGM device (a device with no receiver). %@ participants in the control group

were given an unblinded CGM device, and b were followed for an additional six

months. The dataset is publicly availa ttp: |abetes jaeb.org/RT_CGMRCTProtocol.aspx.

Participants enrolled m\ were 8 years old or older, had a clinical diagnosis of
I

T1D for at least 1 year, eline HbAlc of <10%. Participants were using either pump or

multiple daily i |nje inister insulin in order to be eligible. Individuals were excluded
if they used c ro s, had a diagnosis of asthma or cystic fibrosis, or received psychiatric
treatmeu“' ious 6 months. Those who had used a CGM device in the previous 6

m% 0 were pregnant were also excluded (U.S., National Library of Medicine, 2017;
® ane et al., 2008).

List of Measures
Data on participant’s age, gender, duration of T1D, insulin delivery method, BMI, socio-

economic status and other demographic and clinical characteristics were obtained through


http://diabetes.jaeb.org/RT_CGMRCTProtocol.aspx

participant questionnaires and medical chart data. Values for HbAlc were collected from a
central laboratory every 3 months, with a maximum of five values for each participant (U.S.,

National Library of Medicine, 2017; Tamborlane et al., 2008). The glucose indices were

calculated by taking the percentage of CGM records that fall within each specified range (7
180 mg/dL, >180 mg/dL, etc.) out of all valid CGM records. Details on the calculatio

composite scores are provided in published literature (Augustein et al., 2015; B

2018; Hill, 2007; Hirsch et al., 2017, Khonert, 2015; Khonert, 2017; Kov c% %, 2006;
Marics, 2015; McCall et al., 2009; Peyser et al., 2018; Rawlings et rvice, 2013;
Vigersky et al., 2018). &

Statistical Methods \%

Summary statistics were tabulated for dera ariables, clinical characteristics,
glucose indices, and CGM metrics (Tables 1 $ dian and interquartile range were
cieSan

reported for continuous variables and

variables. Q
Spearman partial @ were used to assess the relationship between each CGM
&x

d proportions were reported for categorical

composite metric cemic indices (Table 3). This method is appropriate as the glycemic
indices time , time > 250 mg/dL, time < 70 mg/dL, and time <54 mg/dL tend to be
non-no istributed, requiring a non-parametric test (Beck et al., 2019). P-values testing

th hesis that correlation coefficients are not significantly different from 0 were

Q . Correlations were adjusted for age, sex, race, highest education level, pump use,
a

betes duration, and treatment group.

Receiver Operating Characteristics (ROC) curves plot the sensitivity by 1 minus the

specificity of logistic regression models and the area under the curve. ROC curves measure the



model’s ability to predict an event versus a non-event. ROC curves were produced for each of
the 5 glycemic indices to indicate the predictive performance of each CGM metric (Figures 1-5)
in predicting if a participant met the ATTD clinical targets for the respective glycemic index.
Area under the curve was estimated using the c-statistic (Table 4). Data from the primary p,

(phase 1) of the JDRF trial was used to compute correlation coefficients and ROC CUQ

All p-values reported were two-sided and all analysis will be performe @S

version 9.4 (Cary, NC). e



Results

Participant characteristics are displayed in Table 1. Mean age at baseline was 25
old, 248 (55%) of participants were female, 425 (94%) were white, 332 (74%) hadsa ba
degree or higher, 367 (81%) used an insulin pump, and participants had bee g with
diabetes for an average of 14 (x12) years. During the primary phase of e median
time spent below 54 mg/dL was 0.6% (IQR: 0.2%-2%), median ti 0 mg/dL was 4%
(IQR: 1%-6%), median time in range was 61% (IQR: 50%-, &ian time above 180 mg/dL
was 35% (IQR: 24%-46%), and median time above as 9% (IQR: 5%-17%).

Summary statistics for CGM derived measures o

HbAZ1c are shown in Table 2. v

Table 1. Participant Demographi

ontrol and variability as well as

ical Characteristics

N =451
Age at baseline (yrs) — Meah 25+ 16
Female — N (%) 248 (55%)

Race — N (%)
White 425 (94%)
Black 7 (2%)

Other 19 (4%)
Highest —N (%)
Hi ess 58 (13%)
ﬁa 61 (14%)
197 (44%)
rs 100 (22%)
ctorate/Professional 35 (8%)
abetes Duration (yrs) — Mean + SD 14 +12
ump Users - N (%) 367 (81%)
Treatment Group 232 (51%)




Table 2. Summary Statistics for Continuous Glucose Monitor Derived Metrics and HbAlc by

Study Stage’?

Phase 1 Phase 2
HbAlc (%) 7.2 (6.8-7.7) 7.3 (6.8-7.8)
Time below 54 mg/dL (%) 0.6 (0.2-2) 0.6 (0.2-2)
Time below 70 mg/dL (%) 4 (1-6) 3 (2-6)
Time in Range (70-180 mg/dL) (%) 61 (50-71) 61 (51-71)
Time above 180 mg/dL (%) 35 (24-46) 34 (23-45)
Time above 250 mg/dL (%) 9 (5-17) 9 (4-16)
Pentagon Area 1081 (891-1401) 1066 (877-1326)
Personal Glycemic State 18 (13-22) 17 (12-21)
ADRR 40 (32-48) 39 (32-47)
GRADE 35 (32-39) Q
Q-Score 7.8 (5.6-10.5) .0 (5.
GMI (%) 7.2 (6.8-7.6)
J-Index 50 (40.6-63.6)
MAGE 117 (100-134)
GVP (%) 36 (29-51)
MODD 66 (56-77) %4 (54-74)
CONGA: 29 (25-3 \ 9 (25-34)
CONGA; 41 (3 -4% 42 (36-48)
CONGA4 51 ( 51 43-59)

1. Shows median (interquartile range)

2. Summary statistics shown for hemoglobin Alc (HbAlc), th nsive glucose pentagon area (CGP), personal glycemic
state (PGS), average daily risk range (ADRR), glycemic risk a: nt diabetes equation (GRADE), Q-Score, glucose

management indicator (GMI), J-index, mean ampli lycemic excursions (MAGE), mean of daily differences (MODD),
continuous net glycemic action (CONGA) and tim mg/dL, time below 70 mg/dL, time in range , time above 180
mg/dL and time above 250 mg/dL.

HbA1c showed we ® correlations with time below 54 mg/dL (R =-0.05) and
). HbAlc had a weaker correlation with time below 54 mg/dL

time below 70 mg/d &1
than any CGM derive trics, with the exception of the J-index (R =-0.01). ADRR had the

with time below 54 mg/dL (0.60) and the second strongest correlation with

strongest

tim %
. GVP, CONGA and CGP had moderate correlations with time below 54 mg/dL, while
I had a moderate correlation with time below 70 mg/dL (Table 3).

HbA1c was moderately correlated with time in range (R = -0.62), however all other CGM

g/dL (R = 0.45), with GRADE having the strongest correlation with time below

derived metrics with the exception of GVP and CONGA: had stronger correlations. The Q-score

10



had the strongest correlation with time in range (R = -0.93), with J-index (R =-0.91), CGP (R = -
0.88), PGS (R =-0.88), and GMI (R = -0.85) also being strongly correlated with time in range.
HbA1c was also moderately correlated with time above 180 mg/dL (R = 0.68) and time above
250 mg/dL (R = 064). GMI had the strongest correlation with time above 180 mg/dL (R = 0.9%),
with J-index (R = 0.95) and GRADE (R = 0.95) also being highly correlated. J-index

strongest correlation with time above 250 mg/dL (R = 0.97) with Q-score (R = nd GM

(R =0.89) also being highly correlated. Q

HbA1c had the lowest area under the curve when predictingy' ipant was meeting
0

the clinical targets for time below 54 mg/dL (AUC = 0.51), ti mg/dL (AUC = 0.57),

time in range (AUC = 0.79), and time above 250 mg/dL .80). The model with ADRR
correctly predicted if a participant was meeting t I arget for time below 54 mg/dL 84%
%osite score. GRADE and ADRR were
@0 g/dL clinical target (GRADE AUC =0.73,
-Score, J-index, and CGP all predicted meeting the

clinical target for time in r correctly with 95% or greater accuracy, the Q-score and J-index

of the time, and was more accurate than any

the best predictors of meeting the tim

ADRR AUC =0.71). The models

had greater than 95% hen predicting meeting the clinical target for time above 180
mg/dL, and th &th Q-score, J-index, CGP, and MODD all had greater than 95%

accuracy cting meeting the time above 250 mg/dL target (Table 4).

11



Continuous Glucose

Table 3. Spearman Partial Correlations between HbAlc, Composite Metrics of Glycemic Control Derived f
Monitors and Time in Range, Time in Hypoglycemia, and Time in Hyperglycemia 123

T<s4 T<0 TRange T>18 T>250

R P Rank R P Rank R P Rank R R P Rank
HbAlc -0.05 03449 11 |[-021 <0001 7 |-062 <0001 10 | 0.68 _< 6 | 064 <0001 10
CGP 038 <0001 4 | 025 <0001 6 |-0.88 <0001 3 Q 5 | 083 <0001 4
PGS 0.34 <0001 5 | 013 00107 10 |-0.88 <.0001 3 0001 3 | 084 <0001 3
ADRR 0.60  <.0001 1 | 045 <0001 2 |-0.68 <.0001 <0001 9 | 065 <0001 9
GRADE | 029 <0001 9 |-052 <0001 1 |-0.79 <.0001 95 <0001 2 | 082 <0001 5
Q-Score | 032  <.0001 7 |015 00034 9 |[-093 <. % 0.81 <0001 3 | 090 <0001 2
GMI (%) | 021 <0001 10 |-0.42 <0001 3 |-0.85 4 | 097 <0001 1 | 089 <0001 3
J-Index | 001 08268 12 |[-0.19 00003 8 |-O. 2 | 095 <0001 2 |097 <0001 1
MAGE 033 <0001 6 | 019 0.0002 8 001 6 | 068 <0001 6 |08l <0001 6
GVP (%) | 044 <0001 2 | 026 <.0001 050 <0001 12 | 039 <0001 10 | 049 <0001 12
MODD 031 <0001 8 | 021 <.0001 %@.80 <0001 5 | 070 <0001 4 | 083 <0001 4
CONGA:1 | 040  <.0001 3 026 <0 Q -0.60 <0001 11 | 048 <0001 9 | 062 <0001 11
CONGA2 | 040  <.0001 3 | 027 4 |-066 <0001 9 | 054 <0001 8 | 070 <0001 8
CONGA4| 038 <0001 4 5 |-071 <0001 7 |059 <0001 7 | 077 <0001 @7

1. Spearman partial correlations calculated hase 1 of the JDRF clinical trial.

2. Correlation coefficients adjusted for a , education, pump use, diabetes duration, and treatment group.

3. Correlations between hemoglobin A
glycemic risk assessment diabet ADE), Q-Score, glucose management indicator (GMI), J-index, mean amplitude of glycemic excursions (MAGE), mean
of daily differences (MODD glycemic action (CONGA) and time below 54 mg/dL (T<s4), time below 70 mg/dL (T<70), time in range (Trange), time above

12



Discussion

The associations between composite measures of glycemic control, measures gl
variability, HbAlc and hyperglycemia, hypoglycemia and time in range were exa 'n&é
data from the JDRF randomized clinical trial to assess the efficacy of CGM.
scores were strongly correlated with hypoglycemia, suggesting a need 0 be more
sensitive to changes in length of time and severity of hypoglycemia. VP, and CONGA

were moderately correlated with time in severe hypoglycemiai(<5 dL), and ADRR,

GRADE, and GMI were moderate correlated with time cemia (< 70 mg/dL). GVP
and CONGA are measures of glucose variability @nore sensitive to time below 54
mg/dL than most other metrics, suggesting th spending more time <54 mg/dL have a

high variability of glucose levels. PreQearch suggested that hypoglycemia is associated

with glycemic variability (Hac@lson, Bartholdy, Djurhoos, & Kuvist, 2018). The
A

average daily risk range rrelated with time below 54 mg/dL than any other metric,
likely because AD&%SQd of a hyperglycemic risk score and hypoglycemic risk score,
and both scor iven equal weight when calculating the composite score. This may also
explain had weaker correlations with time in range and time in hyperglycemia, as
m % with a high risk score for hyperglycemia may have had lower risk scores of
ycemia, moving the overall score towards the average despite a high risk of
perglycemia. GRADE was the strongest correlated metric with time below 70 mg/dL, with

ADRR having the second strongest correlation. Both GRADE and ADRR are calculated by

transforming each blood glucose measurement to reflect the risk of hypo/hyper glycemia, which

13



may have resulted in more weight being placed on hypoglycemic measurements compared to

other composite scores.

Table 4. Area Under the ROC Curves for Predicting Clinical Targets for Glycemic Ranges
Established by Advanced Technologies and Treatments for Diabetes Congress®

T<sa T<70 TRange T>180
HbALc 0.51 0.57 0.79 0.82 0;
CGP 0.70 0.59 0.95 0.89
PGS 0.70 0.56 0.93 0.89 0.90
ADRR 0.84 0.71 0.88 . 0.86
GRADE 0.60 0.73 0.90 . 0.87
Q-Score 0.69 0.57 0.99 0.97
GMI 0.56 0.69 0.93 0.92
J-Index 0.54 0.58 0.97 0.98
GVP 0.76 0.62 0. . 0.81
MAGE 0.71 0.61 1 0.85 0.92
MODD 0.69 0.60 % 0.89 0.96
CONGA; 0.74 0.63 x} 0.80 0.87
CONGA: 0.74 0.63 % 8 0.82 0.91
CONGA, 0.72 . 0.88 0.82 0.93

1.Area under the receiver operating characteristics (ROC) ¢
established by the Advanced Technologies and Treatments fi
metrics are shown: Summary statistics shown for hemaglobin
personal glycemic state (PGS), average daily risk r:
Score, glucose management indicator (GMI), J-in

differences (MODD), and continuous net glyQ
Several metrics g&\mrrelated with extreme ranges of glycemia (time < 54mg/dL,

ing if a participant was meeting the clinical target
ATTD). Area under the ROC curves for the following
Alc), the comprehensive glucose pentagon area (CGP),
lycemic risk assessment diabetes equation (GRADE), Q-
plitude of glycemic excursions (MAGE), mean of daily

time > 250 mg/dL n oderate ranges of glycemia (time < 70 mg/dL, time > 180 mg/dL)
while the op true with other metrics. GRADE and GMI had higher correlations with
moderatewa glycemia. GRADE is calculated by taking the average of transformed
Ixéﬁs while GMI is a function of mean glucose. Since individuals on average spend
§\ime in moderate ranges of glycemia compared to severe ranges, time in moderate ranges
il carry more weight when calculating composite scores based on the mean of all glucose

measurements, which explains by GRADE and GMI are more sensitive to moderate ranges.

14



HbA1c also had higher correlations with moderate ranges of glycemia, which makes sense given

that HbA1c is proportional to mean glucose.

Other metrics including CGP, PGS, ADRR, the Q-score and measures of glycemic

variability were more correlated with time in extreme ranges of glycemia than moderate r
It is likely that those who spend more time in extreme ranges have less control over th ose
and are therefore more likely to experience both extreme hypoglycemia and h cemia, and
therefore have a higher glucose variability. The CGP, PGS, and Q-score aporated time
in range into the calculation of their overall values, which may have? in higher

t

correlations with the extreme ranges. An increase or a decre ime in range may be more

indicative of an increase or decrease in the extreme ran & re moderate ranges of
hypoglycemia and hyperglycemia. c‘é

ROC curves were used to assess each ability to predict meeting the clinical

targets for glycemic indices. HbAlc \Qr predictor of meeting hypoglycemia clinical
targets, which is unsurprising Q)W correlation with time in hypoglycemia shown in
table 3. The model with &apredictor made the correct prediction for meeting the time <
54 mg/dL target 5 f

the time < 70 rget. While correlation between time in severe hypoglycemia and ADRR
was modera R correctly predicted meeting the clinical target 84% of the time, at least

10

the time and made the correct prediction 57% of the time for meeting

n any other metric. Trends in area under the curve were similar to trends in
tion coefficients when looking at the associations between composite scores and time in
nge and hyperglycemia. MODD and MAGE appeared to be strong predictors of time in range

and hyperglycemia, despite having more moderate correlations with these metrics.

15



Most CGM derived composite scores were better predictors of both hyperglycemia and
hypoglycemia compared to HbAlc. HbAlc was a poor predictor of time in hypoglycemia and

was moderately correlated with time in range and time in hyperglycemia. Likewise, ROC curves

showed HbA1c to be a poor predictor of meeting clinical targets for time in hypoglycemia,

was inferior to most CGM derived metrics when predicting if individuals met both Q

hyperglycemia and hypoglycemia targets. %

Prior research has shown that moderate correlations exist between d time in
? ate, N0 consensus
emia. Recent research has

ia occurring at extremely high

range and between HbA1c and time in hyperglycemia (Beck et al.,
has been reached as to the relationship between HbA1lc and
suggested a J-shaped relationship, with higher risk of h
or low values of Alc (Gimenez et al., 2018). Ho research as shown a negative
relationship between HbAl1c and hypoglyce o etal., 2016). Our study showed a week
negative relationship between HbAlc oglycemia. The use of CGM devices my alter the

future research should evaluate the association

relationship between HbAlc an
between HbAlc and hypo 1ain those not using CGM (Giminez et al., 2018).

No studies examined the relationship between composite scores and time in range,
time in hypo ia.and time in hyperglycemia, and compared these correlations to
correlati % Alc. To date no study has evaluated the ability of composite metrics or
H dict meeting ATTD clinical targets for the percentage of time in range,

ycemia and hyperglycemia. This study provides a comprehensive evaluation of a large
mber of CGM derived composite as measures of glycemic control and compares these
measures with the current standard measure of glycemia control, HbAlc. Composite scores that

reflect overall glycemic control in a single measure and that break down hypo and
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hyperglycemia as well as other aspects of the glucose profile into smaller sub-scores are

desirable, and further research should seek to develop and use such measures.

Limitations

This study was a secondary analysis of data from the JDRF clinical trial to assess t

efficacy of CGM. This trial was conducted from 2007-2009, and CGM technology ha

significantly from that time, therefore this analysis should be repeated with m data.

While we were able to compare CGM metrics based on their correlations in various

c} mon diabetes
related complications such as nephropathy, neuropathy, reti and diabetic ketoacidosis. It

v\\ omplications (Nathan et al.,

are superior to HbAlc when

ranges, we could not evaluate the associations between these metri

has been established that HbAlc is strongly associated
2013), therefore in order to claim that CGM deri
evaluating patients with type 1 diabetes, a str ation between complications and said
metrics needs to be established. To d udy collecting CGM data has lasted long enough to
capture long term complication % -point glucose profiles collected during the DCCT
study may potentially be u Xrogate for CGM data and used to compute composite
scores and evaluate their jations with long term complications. Finally, CGM use may have

distorted the r@ etween HbALc and indices of glycemia (Gimenez et al., 2018).
Idu

Future res se outcomes calculated from SMBG or other biochemical measures to

cor%%l and CGM composite scores.

Q sion
HbA1c was weakly correlated with time in hypoglycemia and should not be used to
evaluate hypoglycemia in patients with type 1 diabetes. Better measurements than HbA1c are

available to assess risk of hyperglycemia, including ADRR and GRADE. HbA1c had moderate

17



correlations with time in range and time in hyperglycemia, however metrics such as the Q-score,
GMI, and the J-index had superior correlations with time in range and hyperglycemia.

Composite scores derived from CGM data can provide a more accurate view of an individual’s

glucose profile than HbAlc. While we did not identify a single composite score that was hi
correlated with time in range, time in hypoglycemia, and time in hyperglycemia simu

s@e with
e mic

CGP, GRADE, and GMI had higher correlations with time in all glucose range

HbA1c. The use of these composite scores is recommended when evaluati

control of individuals with type 1 diabetes.
Public Health Significance & a
\A\% diabetes, and it is important

le. It is also important when

Glycemic control is a challenge for individuals
for health professionals to measure it as accuratel
evaluating the efficacy of diabetes treatments trials to use primary outcomes that
reflect overall glycemic control. This emonstrates that several metrics including CGP,

GMI, and GRADE were consis er@ ighly correlated with time in hypoglycemia and
ﬁ;

hyperglycemia than HbAl t se of GRADE and CGP, these metrics can be broken up

into sub-scales Whic&?th hypoglycemia and hyperglycemia risk (Hill et al., 2007;
)

Vigesrky et al. . use of these metrics would provide physicians with a more accurate

e control when determining how best to treat their patients.
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